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The critical behavior of the contact process �CP� in disordered and periodic binary two-dimensional �2D�
lattices is investigated numerically by means of Monte Carlo simulations as well as via an analytical approxi-
mation and standard mean field theory. Phase-separation lines calculated numerically are found to agree well
with analytical predictions around the homogeneous point. For the disordered case, values of static scaling
exponents obtained via quasistationary simulations are found to change with disorder strength. In particular, the
finite-size scaling exponent of the density of infected sites approaches a value consistent with the existence of
an infinite-randomness fixed point as conjectured before for the 2D disordered CP. At the same time, both
dynamical and static scaling exponents are found to coincide with the values established for the homogeneous
case thus confirming that the contact process in a heterogeneous environment belongs to the directed perco-
lation universality class.

DOI: 10.1103/PhysRevE.78.041117 PACS number�s�: 05.70.Ln, 64.60.Ht, 02.50.Ey, 87.18.�h

I. INTRODUCTION

The contact process �CP� �1� is a prototype model for the
spatial spread of epidemics in biological systems. It de-
scribes epidemics in populations where each member can be
in one of two states: infected �I� or susceptible �S� �so-called
SIS models�. The CP exhibits a nonequilibrium phase transi-
tion between an active and a nonactive regime of the disease,
behaving at its critical point according to the directed perco-
lation �DP� universality class. This has been established by a
range of analytical and numerical techniques �2–5� such as
renormalization group analysis �5,6�, series expansions �7�,
Monte Carlo �MC� simulations �8,9�, and spectral analysis of
the Liouville operator �10,11�. These analyses have been un-
dertaken for simple topologies, mostly for homogeneous hy-
percubic lattices.

Recently, interest has turned towards the behavior of this
process in disordered environments and revealed very pecu-
liar features such as changing exponents and significantly
different dynamics such as Griffiths phases and activated
scaling �12–14�. In general, heterogeneous environments are
typical in realistic systems, especially in the context of con-
trol of epidemics �15–18�. Therefore, it is instructive to in-
vestigate the critical behavior of the CP under these condi-
tions and in particular to establish the phase diagrams for
such systems. In the past, the disordered CP �DCP� has been
investigated in both one and two dimensions in a range of
settings and revealed a continuous change in static critical

exponents starting from the clean DP values �13,19,20�. In
the one-dimensional �1D� case, a strong-disorder renormal-
ization group study allowed deep insight into the disordered
process and revealed a dominating infinite-randomness fixed
point �IRFP� for sufficiently strong disorder �6�. In the
weak-to intermediate-disorder regime, however, MC simula-
tions and density-matrix renormalization group �DMRG�
techniques �19� as well as series expansions �20� found con-
tinuously varying disorder-dependent critical exponents
which were found to approach those characteristic of an
IRFP with increasing strength of disorder. For the 2D CP
with site dilution, MC simulations showed a similar behav-
ior, a continuous change in exponents with increasing disor-
der �12,13� and, in retrospect �19�, giving evidence for the
existence of an IRFP also in this case.

In this paper, we consider the phase diagram of the CP in
a binary 2D lattice of sites with different recovery rates �A
and �B drawn from a bimodal probability distribution. Exten-
sive MC simulations following �12� are employed in order to
locate the line of critical points in the space of recovery rates
��A ,�B�. As such simulations of disordered systems are nu-
merically intensive due to very long relaxation times, ana-
lytical approximations are vital to constrain the region of
phase space, which contains the line of critical points. Here,
we analyze the results obtained from the mean-field approxi-
mation and further propose an approximate expression for
critical points guided by the structure of the Liouville opera-
tor, which governs the time evolution of the CP. It appears
that the latter approximation provides a lower bound for the
phase boundary.

Also, the quasistationary �QS� simulation method �21� is
employed to investigate the static scaling behavior of the CP*sf287@cam.ac.uk
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in this disordered system and to calculate the corresponding
critical exponents. In particular, we study whether the pro-
cess in this setting exhibits disorder-dependent changing
�possibly effective� exponents, which cross over to values
characteristic of an IRFP for sufficiently strong disorder as
observed previously �13,19�.

Following on, we investigate the behavior of the CP in a
range of heterogeneous periodic lattices with different unit
cells via MC simulations and test the validity of our analyti-
cal expression as well as standard mean field theory. The two
analytical approaches, mean-field and our alternative ap-
proximation, enable us to largely constrain the location of the
critical points in both the disordered and the heterogeneous
periodic lattices. Critical exponents are found to change con-
tinuously in the former case with increasing disorder and
appear to approach the predicted values characteristic of an
IRFP while they remain constant at their DP values in the
latter.

The CP, its critical behavior, and some of the theoretical
foundations employed for its description are introduced in
Sec. II. Our analysis of the disordered system is presented in
Sec. III. In Sec. IV we investigate the CP in a range of
heterogeneous periodic lattices in a similar fashion. Lastly,
our findings are discussed in Sec. V and we summarize in
Sec. VI.

II. BACKGROUND

In this section, we define the CP and give an overview of
its critical behavior and the master-equation description by
means of the Liouville operator. The CP is a nonequilibrium
stochastic process in which an infection spreads via nearest-
neighbor contact from site i to site j at a transmission rate
wi→j. Recovery of site i is spontaneous and happens at a
recovery rate �i. In the thermodynamic limit, the ratio of
these two rates is the control parameter of a second-order
phase transition between a nonactive phase where no in-
fected sites remain as t→� and an active phase where the
density of infected sites �order parameter� is nonzero as t
→� �2–4�.

For the CP in a system of size N with sites i=1¯N we
denote the two possible states of site i as si=1 �infected� or
si=0 �susceptible�. A microstate of the system, i.e., a snap-
shot of the infection states of all sites, can be defined as a
vector S= �s1 , . . . ,sN�T and the probability of finding the sys-
tem in a specific microstate at time t is denoted by P�S , t�.
Assuming the transition rates between microstates S and S�
to be rS→S�, the time evolution of this probability follows the
master equation, which expresses the conservation of prob-
ability flow,

�tP�S,t� = �
S�

�rS�→SP�S�,t� − rS→S�P�S,t�� , �1�

where the transition rates rS→S� follow from the rules of the
CP. The master equation can be recast in compact form by

introduction of the Liouville operator L̂ which acts on the
probability state vector �P�t��,

�t�P�t�� = L̂�P�t�� , �2�

the components of which are the probabilities of finding a
system of N sites in different states ��� at time t, �P�t��
=���� � P�t�����. Here, 	���
 is the orthonormal basis diago-
nal in the occupation number representation �3,10�. The pre-

cise form of L̂ is most readily expressed in terms of spin-1 /2
ladder operators acting on sites i, ai

†, and ai, respectively,

L̂ = �
i
��i�1 − ai

†�ai + �1 − ai�ai
† �

j�NN�i�
wj→iaj

†aj� , �3�

where the first part destroys particles while the second part
creates offspring �3�. The Liouville operator is non-

Hermitian with matrix elements L̂�������L̂���, which co-
incide with the transition rates from state � to state ����

and L̂��=−�����L̂���.
In principle, Eq. �2� can be solved by performing direct

diagonalization of the 2N�2N real sparse �for lattice topolo-
gies� nonsymmetric Liouville matrix. Its formal solution can
then be expressed as

�P�t�� = �
i

e�it�ei�P�0���ei� , �4�

where �i are the eigenvalues of the Liouville matrix with a
complete set of eigenstates �ei�. The trivial solution �e0� of
the eigenproblem for the Liouville operator with �0=0 cor-
responds to the absorbing state of the system. All other
eigenvectors �ei� in finite systems have eigenvalues with
negative real parts and thus decay exponentially with time.
In the thermodynamic limit �N→��, there is one eigenstate
�e1� with corresponding eigenvalue, �1, which is zero in the
active and nonzero in the nonactive phase. In a finite system,
the value of �1 in the active �nonactive� regime approaches a
zero �nonzero� value with increasing N, thereby signaling the
phase transition. The exact location of the transition can be
extrapolated using finite-size data for moderate system sizes
�e.g., N�16� from direct diagonalization or density-matrix
renormalization group calculations �6,10�.

III. DISORDERED SYSTEM

In what follows, we investigate the behavior of the CP on
a lattice of two types of site A and B characterized by differ-
ent recovery rates �A and �B, respectively. The recovery rate
at site i, �i, is drawn from the bimodal distribution

p��i� = x���i − �A� + �1 − x����i − �B� , �5�

where x controls the relative concentration of A and B sites.
The transmission rate, for simplicity, is the same for all
possible links between nodes wi→j =wj→i=w. As a further
simplification, the time scale is set up by choosing w=1 /Z
with Z being the number of nearest-neighbor links per node
�Z=4 for the topologies considered here�.

A. MC Simulation

MC simulations are used to locate the critical point by
starting from a single infection seed and averaging over 106
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realizations of the process each with a fresh realization of the
disorder up to a maximum of 106 time steps. We consider the
case of x=0.5 and a range of values for �A, aiming to find the
corresponding critical �B for each. As previously observed
�12�, very slow dynamics are encountered, an effect that in-
creases with disorder strength, i.e., the distance between �A
and the homogeneous critical rate �c=0.60653�3� �3�. Fol-
lowing �12�, the criterion of asymptotic monotonic growth or
decay in order to assess whether the process is supercritical
or subcritical for a particular choice of rates is employed. For
clarity of presentation, rescaled recovery rates 	i�i /�c are
introduced in order for the homogeneous critical point to be
conveniently located at 	c=	A=	B=1. The resulting phase
diagram, symmetric in 	A and 	B, is shown in Fig. 1.

B. Mean-field approximation

As outlined in Sec. I, we are interested in analytically
approximating the region where the phase separation line is
located. To this end, we first present an approach based on
mean-field theory �3�. In this approximation, fluctuations and
correlations are ignored rendering the master equation ana-
lytically tractable. For the case of the disordered system con-
sidered above, the governing equations for the mean concen-
trations of infected sites of type A and B, nA and nB,
respectively, are given by

�nA

�t
= − �AnA +

�*

2
�1 − x�nB�1 − nA� +

�*

2
xnA�1 − nA� ,

�nB

�t
= − �BnB +

�*

2
xnA�1 − nB� +

�*

2
�1 − x�nB�1 − nB� ,

�6�

where �*=wZ=1 is the mean-field critical value for the re-
covery rate in the homogeneous 2d square lattice. As usual

for the mean-field approximation in low-dimensional sys-
tems, �* significantly overestimates the true critical value for
the homogeneous case, �A=�B. The locus of critical points in
the parameter space ��A ,�B� separating nonactive and active
phases can be easily found from the solution of Eqs. �6� in
the steady-state regime giving

� 1

	i
� = 1 �7�

with 	i=�i /�* where �¯� denotes an average over disorder
realizations.

The resulting phase separation line is shown in Fig. 1
along with the MC data presented above. Note that due to
rescaling, mean-field and numerical results coincide by con-
struction at the homogeneous critical point. In order to allow
a quantitative comparison between numerical results and ap-
proximation, a measure of difference between prediction and
the true value obtained by MC simulation is needed. As such
a measure, we consider the shortest distance 
�d� between
the prediction curve and an MC data point a �shortest path�
distance d away from the homogeneous point. This error
quantity is suitable for quantitative analysis as it is a measure
for the width of the region of uncertainty between the ana-
lytical prediction and the true critical line and will be sym-
metric about the homogeneous point for symmetric phase
diagrams. The inset of Fig. 1 shows 
�d� for the mean-field
approximation �blue squares�.

As can be seen from the figure, the mean-field approxi-
mation provides an upper bound to a region that contains the
phase separation line. While the deviation 
�d� is small in
the vicinity of the homogeneous critical point �
�0.01�, it
grows considerably as the degree of heterogeneity increases
�
�0.1�.

C. Alternative analytical approximation

Given that the mean-field approximation appears to pro-
vide an upper bound to the region, which contains the phase
separation line, we are interested in obtaining an alternative
analytical approximation that may provide a lower bound. In
the following we will first present an approximate expression
for the location of critical points in a heterogeneous system
and then compare its predictions to the MC data of Sec.
III A. Following on, we give a motivation for this approxi-
mation along with numerical support.

1. Statement and comparison to data

Consider a finite system of N sites with arbitrary recovery
rates �i �i=1, . . . ,N�. We will argue below that for such a
system in the vicinity of the homogeneous critical point �all
�i=�c� the expression

�
j

N

� j = �c
N, �8�

approximately predicts the location of critical points. For the
disordered system presented earlier, this expression simpli-
fies to �c

2=�A�B. Figure 1 shows both the MC data presented

0 2 4
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ε B -5 -4 -3 -2 -1 0
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∆

FIG. 1. �Color online� The phase diagram for the CP on a dis-
ordered lattice with sites of recovery rates 	A or 	B drawn from the
distribution Eq. �5� for the case x=0.5 obtained from MC simula-
tion �dots�, mean field �upper dashed line�, and the analytical ex-
pression Eq. �8� �solid line�. Inset shows the deviation 
�d� as
defined in the text for both mean field ��, blue� and Eq. �8� ��,
red�.
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earlier and the approximate line of critical points thus ob-
tained. As can be seen from the figure, the alternative ana-
lytical approximation is found to provide a reliable lower
bound to the region that contains the line of critical points.
Hence, in combination with the mean-field approximation
discussed above, one can constrain this region. Considering
the error 
�d�, it is found to show similar behavior to the one
previously observed for the mean-field data albeit an order of
magnitude larger.

2. Motivation and numerical support

In the following we motivate Eq. �8� by considering the
structure of the Liouville operator as defined in Sec. II. For
the finite system introduced above, the eigenvalues of the
Liouville operator, �, are given by the characteristic equa-
tion,

�−1��Î − L̂� = QNmax
�	�i
,�� = �

n=0

Nmax

An�	�i
��n = 0, �9�

where QNmax
��� is a polynomial in � of order Nmax �Nmax

=2N−1� and division by � eliminates the trivial zero root for
the absorbing state. It is our aim to solve this equation ap-
proximately in the vicinity of the homogeneous critical point
where �i=�c.

To this end, we first consider the coefficients An and look
for features in their structure, which may help in rendering
the equation tractable. Generally, the An can be expressed as

An�	�i
� = �
m1,. . .,mN=0

�m1,. . .,mN

�n� �
j

N

� j
mj , �10�

where the upper limits in the sum depend on n but their
precise values are not significant for the analysis below. We
now assume that in the construction of the An�	�i
� from the

determinant of �Î− L̂, the dominant contribution stems from
terms with products of the same �or at least similar� powers
of recovery rates at different sites. If this is true, the previous
equation can be approximated as

An�	�i
� � An��
j

N

� j� = �
m=0

m
*

�m
�n���

j

N

� j�m

, �11�

where m*2N /N. While this assumption may at first appear
artificial, a justification can be found in the structure of the
Liouville operator. The determinant of the Liouville matrix
contains the sum of terms, which are the products of the
recovery rates �the transmission rates are chosen to be con-
stant�. A typical �representative� term contains a product of
many recovery rates, each one picked from a different col-
umn. Assuming periodic boundary conditions, all sites in the
system should enter the Liouville matrix in the same fashion.
Therefore, in a typical term one would not expect to find an
over-representation of a specific site leading to the statement
that the �combinatorially� dominant terms correspond to
products of recovery rates raised to powers that are close in
value.

This argument only holds if one can be sure that the com-
binatorial weight of terms with homogeneous powers is not

offset by the actual values of the recovery rates �i. Other-
wise, one could imagine the dominance of terms with very
different powers of �i caused by the raising of values �1 to
a high power. However, recall that for the clean CP at the
homogeneous critical point, the true critical recovery rate is
�1. Thus, close to this point, the critical recovery rates �i,
will always be close in value and �1 which means that the
above argument about homogeneous powers is expected to
hold in this regime. Further support will be given below in
the form of numerical evidence using a specific system fur-
ther down.

As explained in Sec. II, at criticality the highest nontrivial
eigenvalue �1�N� will be finite and tends to zero with in-
creasing N. For the case of homogeneous recovery rates at
criticality, �i=�c and QNmax

�	�c
 ,�1�=0. Finally, by combina-
tion of this property and Eq. �11�, we indeed find � j

N� j =�c
N

for the homogeneous critical point, which is precisely the
statement presented above in Eq. �8�.

The last step of our approximation then is to employ the
same relation away from the homogeneous point and to use
it to predict the locus of critical points.

More formally, the above condition for critical points can
be derived from Eqs. �9� and �11� via a Taylor series expan-
sion of QNmax

�	�i
 ,�1� around the homogeneous critical point
in ln��i /�c�,

QNmax
�	�i
,�1� = �

n=0

Nmax

An�	�i
��1
n = �

n=0

Nmax ��
m=1

m
*

�m
�n�em�i

N ln �i��1
n

= �
n=0

Nmax

�
m=1

m
*

�m
�n��c

mN�
k=1

�
mk

k!
lnk��

i=1

N
�i

�c
��1

n = 0.

�12�

Here, we used the relation QNmax
�	�c
 ,�1�=�n=0

NmaxAn��c
N��1

n

=0 which leads to no constant term in the expansion and
allows factorization of the above expression, i.e.,

QNmax
�	�i
,�1� = S ln��

i=1

N
�i

�c
� = 0, �13�

where

S = �
n=0

Nmax

�
m=1

m
*

�m
�n��c

mN�
k=1

�
mk

k!
lnk−1��

i=1

N
�i

�c
��1

n. �14�

Equation �13� is obeyed if

ln��
i=1

N
�i

�c
� = 0, �15�

because S�0 for arbitrary choice of �i, which coincides with
the condition given by Eq. �8�. Alternatively, our approxi-
mate expression can be recast as an expectation value of
logarithms �20�
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E�ln
�

�c
� = 0. �16�

Note that this procedure amounts to simply geometrically
averaging the recovery rates and inserting them into the
clean theory. Interestingly, the logarithm of rates well known
from renormalization group analyses of the DCP and the
random transverse-field Ising model �5� arises naturally in
our scheme.

In order to support the assumption about a dominant con-
tribution to Eq. �10� from products of homogeneous powers
of recovery rates, numerical evidence for a simple system is
given below. Let us consider a 1D binary chain of sites A and
B characterized by recovery rates �A and �B, respectively, and
spatially arranged as ¯ABAB¯ with periodic boundary
conditions. As a particular example, we analyze the coeffi-
cient A0��A ,�B� defined by Eq. �10�, which reads �where �
��0��

A0 = �
mA,mB

�mAmB
�A

mA�B
mB = �

m=0

m
*

Bm��A,�B� �17�

with

Bm��A,�B� = ��A�B�m � ��mm + �
j=1

m
*

−m

�m+j,m�A
j + �m,m+j�B

j� ,

�18�

which can be symbolically evaluated for relatively small sys-
tems �N�6�. Initially, �A and �B will both be set equal to �c
consistent with our assumption that we investigate the vicin-
ity of the homogeneous critical point. This enables us to
investigate the relative magnitude of terms corresponding to
different arrangements of powers. The terms Bm effectively
correspond to the contributions which contain either the ho-
mogeneous power m or one recovery rate to the power m
along with the other recovery rate to a power greater than m.
The magnitudes of the Bm as functions of m for the binary
system of size N=4 and N=6 are shown in Fig. 2 �top panel�.
For both cases we observe sharp peaks centered at mmax=3
�N=4� and mmax=12 �N=6� indicating a dominant contribu-
tion from a narrow range of powers.

The contribution to A0 from purely homogeneous powers
can be written as C0=�

m=0
m

* �m,m��A�B�m while corrections to
this can be expressed as

Ck = �
m=0

m
*

−k

��m+k,m�A
m+k�B

m + �m,m+k�A
m�B

m+k� �19�

for k�1. The values of Ck represent contributions from pow-
ers differing by k from each other thus allowing a systematic
investigation of the validity of our assumption. We are inter-
ested in the magnitude of these corrections as a function of
the relative difference normalized by mmax between powers
in order to allow a comparison between different system
sizes. While the homogeneous contributions C0 are found not
to be the most dominant, the corrections are peaked at C1 for
both systems considered and decay quickly with k. In par-

ticular, this decay happens increasingly rapidly with larger N
as a function of relative difference between powers k /mmax
�see the red curve marked by squares ��� for N=6 and the
black one marked by diamonds ��� for N=4 in Fig. 2� �bot-
tom panel�. A deviation of the values of �A and �B from their
value of �c is found to reduce the dominance of the peaks
presented above but does not immediately invalidate the as-
sumption. However, when moving far away from the homo-
geneous critical point, the peaks flatten out indicating a
breakdown of our approximation. In summary, all of the
above findings can be considered to support the assumption
about a dominant contribution of homogeneous powers of
recovery rates in Eq. �17�. We have undertaken a similar
analysis for the coefficient A1 and expect the same behavior
for the remaining An. An analysis of An �for n�2� in a simi-
lar manner quickly becomes prohibitive due to the computa-
tional complexity of the resulting expressions. However, as
�1 approaches zero with increasing N, these higher terms are
expected to become increasingly irrelevant. The question of
whether one always expects to obtain a lower bound is ad-
dressed in the discussion �Sec. V� after more example cases
have been compared to simulation data.

D. Critical exponents from quasistationary simulations

Investigations of the 2D DCP have been carried out in the
past and have investigated both dynamic �12� and static scal-
ing properties of the process �13�. In general, the study of
critical properties of the disordered process is complicated
due to long relaxation times and ambiguity regarding the
nature of scaling. In the following, we will investigate the
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FIG. 2. �Color online� Top panel: The terms Bm as defined in Eq.
�17� for a linear AB chain of size N=4 �left black peak, �� and
N=6 �right red peak, �� normalized by their maxima. Bottom
panel: The correction terms Ck as defined in Eq. �19� as a function
of the relative difference between powers k /mmax, where mmax is the
location of the respective maximum in the upper panel. Symbols as
before, all values have been normalized to the corresponding homo-
geneous contributions C0.
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static scaling of the disordered process by employing QS
simulations �21� and compare our results to both previous
studies as well as theoretical predictions.

In the clean CP, the order parameter, limt→�� is expected
to obey the scaling form �3�

� � L−xG�L1/���� − �c�� , �20�

where x=� /��, L is the linear size of the system, and � and
�� are critical exponents. Further, G is a scaling function
which asymptotically behaves as G�y�→y� as y→� and
G�y�→const for y→0. An analogous finite-size scaling form
is expected to be obeyed by the order parameter fluctuations
�=Ld��2− �̄2�, with the exponent x replaced by x�=−� /��.

In order to apply the above scaling relations, one com-
monly considers QS values of observables as no true station-
ary state can exist in a finite system. The CP, when started
from a fully infected system, initially relaxes while spatial
correlations grow towards the system size and temporal cor-
relations decay. Once the spatial correlation length becomes
comparable to the size of the system, the process enters a QS
regime characterized by a time-independent nonzero transi-
tion rate to the absorbing state. In this regime, the QS density
�̄, i.e., the density � conditioned on survival, attains a con-
stant value. In the past, analysis of this metastable state in
computer simulations has proved to be notoriously difficult.
Usually, the time-dependent density of infected sites condi-
tioned on survival �̄, which becomes stationary in the QS
regime, is investigated �3�. Problematically though, it is nei-
ther clear at what time this density has converged to its QS
value nor when the QS state starts to decay due to finite-size
effects �22�. Therefore, a range of alternative approaches
have been proposed which enable an observation of this
metastable regime �see Ref. �21�, and references therein�.
Here, we employ the QS simulation method �21� which al-
lows a direct sampling of the QS state by eliminating the
absorbing state and redistributing its probability mass over
the active states.

Following Ref. �21�, one starts from the master equation
Eq. �1�. For the CP, this equation does not admit a nontrivial
stationary solution for a finite system due to the existence of
the absorbing state 0 which can be entered but not be left.
The QS solution mentioned above can be defined as

P̄�S� = lim
t→�

P�S,t�
Ps�t�

, �21�

where Ps�t� denotes the survival probability of the process at
time t. Now, consider a modification of the governing equa-
tion

�tQ�S,t� = �
S�

�rS�→SQ�S�,t� − rS→S�Q�S,t�

+ rS�→0Q�S�,t�Q�S,t�� , �22�

where Q�S , t� denotes the probability of a new process gov-
erned by this equation being in state S at time t. The station-

ary solution of Eq. �22� Q̄�S� coincides with the QS prob-
ability of the original process as can be seen by substituting

Q�S , t�= Ps�t�P̄�S� and noticing that in the QS regime

dPs /dt=−Ps�SrS→0P̄�S�. In that case, the right-hand side of

Eq. �22� is equal to zero if Q̄�S�= P̄�S� as required. The last
term in Eq. �22� can be viewed as a redistribution of prob-
ability from the absorbing state to the active states according
to their probability �21�. Thus, if one could sample from a
process governed by Eq. �22�, it would converge to a true
stationary state governed by the QS probability distribution
of the original process. Such a process is given by the origi-
nal CP where all transitions to the absorbing state are instead
redirected to an active state randomly chosen according to its
probability. As in practice this probability is not known a
priori, an estimate is generated by sampling from the history
of the process. Generally, the method has proved to be effi-
cient with fast and reliable convergence after optimization of
history sampling parameters �21,23�. The approach is par-
ticularly suited to a study of the DCP for which, in dynamic
single-seed MC simulations employed for the DCP in the
past �12,14�, the question of whether the long-time limit of
the process had been reached was frequently contested. In
contrast, QS simulations offer a clear means of ensuring this:
a true stationary average whose convergence can be moni-
tored.

Here, we have investigated the 2D DCP with bimodal
disorder in its recovery rates drawn from the distribution
given by Eq. �5� by means of QS simulations for up to 108

time steps and systems of sizes L=8, . . . ,128 sites averaging
over no less than 103 disorder realizations. At the critical
point, fits to the above finite-size scaling relations yielded
estimates for the exponents x and x�. In order to be able to
judge the quality of fit encountered as well as the influence
of finite-size effects, in Fig. 3 we present data for the scaling
of ln �̄ with ln N for the case �a=0.5. As can be seen from
the figure, the slope of the resulting regression line is largely
independent of the subset of system sizes considered—an
important point when only comparatively small system sizes

2.5 5.0

)N(nl

-6

-5

-4

-3

-2

-1

0

)̄
ρ(

nl

[8, 16, 32, 64, 128]
[8, 16, 32, 64]
[8, 16, 32]

FIG. 3. �Color online� Illustration of the data used for extraction
of the exponent x for the case �a=0.5. Straight lines are least-
squares fits to the subsets of system sizes indicated in the legend
and the top dashed line is the prediction for the exponent value at an
infinite-randomness fixed point. The resulting slopes corresponding
to different subsets are found to differ by less than 2%.
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can be used in the simulations. For the homogeneous case,
the well-established values for the exponents of the DP uni-
versality class are recovered �� /��=0.795�7�, � /��

=0.41�2� �24��. As the degree of disorder, i.e., the difference
between recovery rates �A and �B, is increased, the measured
exponents are found to change with disorder strength where
x increases while x� decreases �see Table I�. For strong het-
erogeneity, no credible fluctuation exponent could be ex-
tracted from the data due to strong sample-to-sample fluctua-
tions. This is unfortunate as it prevents us from testing the
validity of the hyperscaling relation �

��
=d− 2�

��
. A similar re-

lation for dynamical exponents had previously �12� been
found to break down for the DCP.

IV. HETEROGENEOUS PERIODIC LATTICES

In order to investigate the range of validity of Eq. �8�, we
now turn to the behavior of the CP on lattices with periodic
arrangements of sites of type A and B discussed above. For
such systems, the equation for the locus of critical points
reads

�A
cA�B

cB = �c, �23�

where cA and cB denote the concentration of species A and B,
respectively. Three lattice systems have been analyzed with
cA=cB=1 /2: �i� a standard chessboard lattice �Fig. 4�b��, �ii�
a big chessboard lattice �Fig. 4�b��, and �iii� a lattice of rows
�Fig. 4�c��. Extensive MC simulations �3�106 runs up to t
=3000 maximum time steps� starting from a single infection
seed were performed for these heterogeneous lattices. Unlike
in the disordered case, for heterogeneous systems,
asymptotic scaling relations that are well known from the
homogeneous case are found to hold. At criticality, the aver-
age number of infected sites �N�t��, the mean squared radius
�R2� of spread of the CP �where angular brackets denote
averaging over all realizations and over active realizations at
time t, respectively�, and the survival probability P�t� follow
asymptotic scaling laws �3�

�N� � t�, �R2� � t2/z, P � t�, �24�

where �, �, and z are the dynamical critical exponents char-
acteristic of the universality class. These scaling relation-
ships provide a method for finding the critical value of the
control parameter by fitting the observables to the above
scaling forms following Ref. �9�. Furthermore, the dynamical
critical exponents can be determined from the fit.

As expected, the numerical data agree very well with the
analytical predictions given by Eq. �23� �see the circles with
the solid line for 	A�	B�1 in Figs. 4�a�–4�c�� in the neigh-
borhood of the homogeneous critical point, and start to de-
viate from the predicted phase-separation line for 	A,B�1
consistent with the validity of our approximation. The qual-
ity of the analytical approximation is high for the standard
chessboard case �
�0.03 for a very large range of rates� but
becomes worse for the big chessboard �
 up to 0.15 when
moving away far from the homogeneous point� and espe-
cially for rows in the range of large values of 	A,B�1.

Furthermore, we have studied two lattices with different
concentrations of nodes A and B, i.e., cA /cB=2 /1—lattice
�iv� �see Fig. 4�d�� and cA /cB=3 /1—lattice �v� �see Fig.
4�e��. In these cases, the phase-separation lines are not sym-
metric about the bisector in the 	A−	B plane. As can be seen
from Figs. 4�d� and 4�e�, the results of MC simulations of the
CP on these lattices are again in good agreement with the
analytical expression given by Eq. �23�, especially near the
homogeneous critical point �see the circles with the solid line
for 	A�	B�1 in Figs. 4�d� and 4�e��. In case of lattice �iv�,
the error as shown in the inset indicates a similar order of
magnitude degree of accuracy as in the simple chessboard
case before �
�0.05 for a large range of rates� while for
lattice �v� the approximation is found to deteriorate �with
approximately twice the value of 
 as compared to lattice
�iv��.

It is instructive to compare the expression for the phase-
separation line given by Eq. �23� with the results obtained
from the master equation within the standard mean field ap-
proximation. Expressions similar to Eqs. �6� can be found for
all the different lattices and solved for the critical rates in the
steady-state regime. The resulting expressions for all the lat-
tices are summarized in Table II.

As follows from Table II, the mean field result coincides
with the expression for the phase-separation line given by
Eq. �23� for the standard chessboard configuration �lattice
�i�� and gives a different prediction for all other cases stud-
ied. The rescaled mean field results agree very well with MC
data around the homogeneous point but display deviations
for 	A,B�1. Looking at the corresponding errors 
�d�, they
are found to be of the same order as found for the previous
analytical approximation.

The fact that for the simple chessboard lattice our earlier
prediction and the mean field result coincide reveals this case
to be special in that the rescaled mean field does not over-but
underestimate the true critical values. In all other studied
lattices, the rescaled mean field results for the phase-
separation lines lie above the numerical data �see the dashed
lines with the circles in Figs. 4�b�–4�e�� and thus lead to an
overestimate of the value if 	B for a given 	A. This means
that for these cases, mean field estimates of critical values
can serve as an upper bound on the critical recovery rate. In
contrast, the phase-separation lines predicted by Eq. �23�
provide a consistent underestimate of the true critical line for
all studied lattices and therefore a lower bound �see the solid
lines in relation to the circles in Figs. 4�b�–4�e� and see the
arguments given in Sec. V� for the critical thresholds.

In order to more systematically investigate how our alter-
native analytical approximation deteriorates as the spatial ar-

TABLE I. The critical rates �B for a given �A, and critical expo-
nents x and x� for the disordered systems discussed in the text.

�A �B �critical� x x�

0.60653 0.60653�3� 0.795�4� 0.42�3�
0.595 0.6188�3� 0.796�5� 0.41�5�
0.5 0.7676�4� 0.83�1� 0.39�3�
0.4 1.1815�5� 0.92�4�
0.35 1.7775�5� 0.93�4�
0.3 3.89�1� 0.99�5�
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FIG. 4. �Color online� �a�–�e� The phase diagram for the CP on the lattices �i�–�v� as defined in the text. The circles represent the
MC data, the solid line is given by Eq. �23� for the specific lattice, and the dashed line corresponds to the mean field result taken from
Table II. The inset shows the deviation 
�d� for both approximations �mean field=�, Eq. �23�=��. �f� The deviation 
 as defined in the
text at criticality for �A=0.9 for the CP on a lattice such as case �ii� but with variable linear size L of the square contiguous regions of A or
B sites.
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rangement of sites becomes “less mixed,” we consider a lat-
tice such as the big chessboard, lattice �ii�, but vary the linear
size L of the square contiguous regions of A or B sites. The
resulting deviation 
�d� as defined above at critical �B for a
choice of �A=0.9, i.e., appreciably far away from the homo-
geneous critical point, as a function of L is shown in Fig.
4�f�. One can see that for L�4 the accuracy quickly be-
comes worse than for any rate and lattice previously consid-
ered indicating a rapid breakdown of the approximation.

Finally, the universality of the critical behavior of the CP
in binary lattices was investigated. The expected dynamical
power-law scaling relations �see Eqs. �24�� were verified and
used to obtain the resulting critical exponents for several sets
of parameters �	A ,	B� on the phase-separation lines for all
the lattices. The evaluation of the exponents was performed
following Ref. �8� through extensive numerical simulations
performing averages of 3�106−107 runs to a maximum of
t=3000 time steps. Our results obtained for the different lat-
tices indicate that, within error bars, the exponents in all
cases coincide with those established for 2D processes in the
DP universality class ��=0.2295�10�, �=0.4505�10�, 2 /z
=1.1325�10�� �25�. Furthermore, the static scaling exponent
ratios determined analogously to the disordered case from
the QS simulation method are found to coincide with those
of the DP universality class.

V. DISCUSSION

Looking back at the phase diagrams for both the disor-
dered and the periodic systems, the introduction of disorder
in the form of a random placement of A and B sites appears
to enhance the activity of the system. In Fig. 1, MC data for
the disordered system are presented and one notices a shal-
low initial increase in critical 	B for a given 	A as one moves
away from the homogeneous critical point followed by an
increasingly steep increase at values of 	A0.5 ��A0.3�.
Comparing this behavior with the corresponding periodic
system �Fig. 4�b��, the critical value for 	B in the disordered
system is found to be much larger.

Considering the arrangement of, say, A sites as a site per-
colation problem, one notices that for concentrations below
the percolation threshold �xc�0.59� no infinite cluster of
such sites can exist. Therefore, no matter how small �but
nonzero� the corresponding recovery rate 	A is, it will require
a finite value of 	B to render the system critical as a finite

cluster cannot support an active state indefinitely. Con-
versely, above the percolation threshold there exists a finite
value of 	A below which the system will be active irrespec-
tive of the value of 	B. Therefore, for the case of x=0.5, no
asymptote at any nonzero value of �A would be expected.
Interestingly, the mean field expression �7� does predict an
asymptote at �A=x albeit for any concentration of sites.

Turning to the CP in heterogeneous periodic lattices, for a
range of cases the combination of the standard mean field
approximation and our alternative analytical approximation
is useful in practice to pinpoint the location of the transition
a priori. Indeed, a tight fit for all cases �with the exception of
the simple chessboard lattice� can be attested. In particular,
the influence of spatial structure on the quality of our ap-
proximation becomes evident. The less mixed the arrange-
ment of A and B sites becomes, the worse the fit of the
approximation is found to be as indicated by the results in
Fig. 4�f�. In order to evaluate the practical relevance of our
approximation, the question of whether it is expected to al-
ways yield a lower bound has to be addressed. To this end,
we define an average clustering coefficient specific to a par-
ticular lattice configuration and site type. For sites of type A,
for instance, define CA=nNN,A /Z, where nNN,A denotes the
number of nearest neighbors of site type A �and analogously
for B sites�. For the case of a periodic lattice with a 1:1
mixture of A and B sites, consider the minimally clustered
configuration, that is the standard chessboard �lattice �i��, for
which CA=CB=0. We know that for this case our approxi-
mation yields a very tight lower bound to the true curve of
critical points. Any lattice with the same concentration of
sites will necessarily have a higher clustering coefficient, i.e.,
a larger fraction of contiguous regions of A and B sites. As-
suming different recovery rates for the two types of site, the
disease will have the tendency to survive longer in a constel-
lation AABB as compared to ABAB due to the adjacency of
two sites of lower recovery rate �say A� which enhances the
probability of infection and reinfection in the AA arrange-
ment. This activity-enhancing effect is not offset by the fact
that two less reactive sites �say B� are also bordering as their
faster �than A sites� recovery is largely independent of spatial
arrangement. Indeed, a direct diagonalization of the corre-
sponding Liouville operator for these two different arrange-
ments of sites readily confirms this intuition. One obtains a
lower �absolute� value for the real part of the first nontrivial
eigenvalue in case of an arrangement AABB as compared to
ABAB indicating a slower approach to the absorbing state in
a finite system.

From this, we conclude that for any periodic arrangement
of A and B sites our alternative analytical approximation is
expected to yield a lower bound to the phase separation line.
Similarly, the arrangement used in lattice �iv� is the mini-
mally clustered �CA=1 /2, CB=0� arrangement with a 1:2
concentration of sites and is found to give a lower bound
leading us to expect the same behavior for any arrangement
of A and B sites in this ratio. Therefore, by testing the mini-
mally clustered case for the desired concentration one should
in practice be able to verify whether or not a lower bound is
expected by our approximation.

Considering the critical exponents obtained for both the
disordered and the periodic systems, they are found to be

TABLE II. The expressions for the phase-separation lines for
the CP on different lattices �first column� obtained according to Eq.
�23� �second column� and within the standard mean field approach
�third column�.

lattice type Eq. �23� mean field

�i� 	B=1 /	A 	B=1 /	A

�ii� 	B=1 /	A 	B=	A / �2	A−1�
�iii� 	B=1 /	A 	B=	A / �2	A−1�
�iv� 	B=1 /	A

2 	B=1 / �2	A−1�
�v� 	B=1 /	A

3 	B=	A / �2	A
2 −1�
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disorder dependent in the former case while they remain at
their DP values in the latter. Estimations from a numerical
implementation of the strong-disorder renormalization
scheme in 2D predict an exponent value xstrong=1.0 at an
IRFP �19,26�. At the same time, as conjectured in �19� and
supported by numerical evidence, the DCP in 2D is likely to
be dominated by such a fixed point for sufficiently strong
disorder similar to the 1D case. Thus, for the case of strong
disorder, one would expect to find exponents characteristic of
an IRFP Our results are consistent with this in that we find an
exponent x which is compatible with the predicted value at
an IRFP for the strongest disorder under consideration ��A
=0.3�.

For lower strength of disorder however, the exponents are
evidently significantly below their values expected near an
IRFP, as can be seen from the prediction line in Fig. 3. There
exist three possible explanations compatible with these find-
ings. First, a continuous line of fixed points, one for each
strength of disorder, could be present which for sufficiently
strong disorder turns to an attractive flow into the IRFP as
suggested in Ref. �6�. Second, identical and numerically in-
distinguishable behavior could be explained by a crossover
between the clean DP fixed point and the IRFP where effec-
tive exponents are observed at intermediate disorder
strengths due to the influence of both fixed points. This has
been observed in several disordered equilibrium systems as
discussed in, e.g., Refs. �27,28�. Lastly, in principle, the ob-
served behavior could also be explained by an abrupt jump
from the clean DP exponents to those of the IRFP obscured
by finite-size corrections.

The last option, we feel, can be excluded in light of the
facts that perturbative series expansions �see Ref. �20�� do
not show a jump in exponents and that no evidence for
strong corrections to finite-size scaling were observed by us
�see Fig. 3�. At the same time, the other two scenarios are
compatible with our and most other results but cannot be
safely distinguished by numerical investigation alone with-
out an established theoretical framework for the crossover in
the DCP which currently is not available.

Moreover, in light of the Harris criterion �29� the conclu-
sion that in our simulations effective exponents resulting
from crossover are being observed appears to be the more
plausible hypothesis. In connection with the CP, this inequal-
ity predicts changed critical exponents upon the introduction
of disorder where the spatial correlation length exponent ful-
fills ���1 for the 2D case. Given that this implies a jump
for the exponent ��, a smooth change in genuine critical
exponents seems unlikely giving preference to the crossover

scenario in which the changing exponents are effective and
thus do not represent proximity to a true fixed point.

Regarding the unchanged exponents in the case of peri-
odic systems, these findings confirm theoretical arguments
�30� which make a prediction about the universal behavior of
the CP in heterogeneous and disordered systems. Under
coarse graining the heterogeneity present in systems such as
the heterogeneous periodic lattices considered in this paper
will eventually become homogeneous after a finite number
of iterations of the coarse-graining procedure. Thus, one
would expect the critical behavior of the CP to be governed
by the conventional clean fixed point of the renormalization
group transformations �5�.

VI. CONCLUSION

In conclusion, we have investigated the contact process in
both heterogeneous disordered and periodic 2D systems �bi-
nary lattices�. The phase diagram has been obtained via ex-
tensive Monte Carlo simulation. Furthermore, two approxi-
mations have been successfully used in order to constrain a
region of phase space which contains the line of critical
points. First, the mean field approximation was employed to
give a phase separation line which provided an upper bound
to this region in almost all systems. Second, an alternative
analytical approximation based on the structure of the Liou-
ville operator was motivated and used to obtain a respective
lower bound in all cases. The quality of both approximations
was quantitatively analyzed for all systems and found to be
high in the vicinity of the homogeneous critical point but
increasingly worse when moving to higher degrees of hetero-
geneity. In general, we conclude that the strategy of con-
straining a region deemed to contain the critical points a
priori may be of practical interest particularly in connection
with disordered systems in which long relaxation times ren-
der computer simulations very costly.

Lastly, critical exponents obtained for the disordered sys-
tem are in good agreement with data from previous investi-
gations obtained in the crossover region between the homo-
geneous case and strong disorder. In particular, the values
obtained for the critical exponent x are compatible with the
existence of an IRFP in the 2D DCP for sufficiently strong
disorder. At the same time, as expected the well-known DP
exponents were recovered for all periodic systems.

ACKNOWLEDGMENTS

The computations were mostly performed on the Cam-
bridge University Condor Grid. S.V.F. and C.J.N. would like
to thank the EPSRC and the Cambridge European Trust for
financial support.

�1� T. E. Harris, Ann. Probab. 2, 969 �1974�.
�2� T. M. Liggett, Interacting Particle Systems �Springer-Verlag,

New York, 1985�.
�3� J. Marro and R. Dickman, Nonequilibrium Phase Transitions

in Lattice Models �Cambridge University Press, Cambridge,
1999�.

�4� H. Hinrichsen, Adv. Phys. 49, 815 �2000�.
�5� G. Ódor, Rev. Mod. Phys. 76, 663 �2004�.
�6� J. Hooyberghs, F. Iglói, and C. Vanderzande, Phys. Rev. Lett.

90, 100601 �2003�.
�7� I. Jensen and R. Dickman, J. Stat. Phys. 71, 89 �1993�.
�8� P. Grassberger and A. De La Torre, Ann. Phys. �N.Y.� 122,

FALLERT et al. PHYSICAL REVIEW E 78, 041117 �2008�

041117-10



373 �1979�.
�9� P. Grassberger, J. Phys. A 22, 3673 �1989�.

�10� J. R. G. de Mendonça, J. Phys. A 32, L467 �1999�.
�11� M. J. de Oliveira, Phys. Rev. E 74, 041121 �2006�.
�12� A. G. Moreira and R. Dickman, Phys. Rev. E 54, R3090

�1996�.
�13� R. Dickman and A. G. Moreira, Phys. Rev. E 57, 1263 �1998�.
�14� T. Vojta and M. Dickison, Phys. Rev. E 72, 036126 �2005�.
�15� M. R. Finckh, E. S. Gacek, H. J. Czembor, and M. S. Wolfe,

Plant Pathol. 48, 807 �1999�.
�16� Y. Zhu et al., Nature �London� 406, 718 �2000�.
�17� W. Otten, J. A. N. Filipe, and C. A. Gilligan, Ecology 86, 1948

�2005�.
�18� G. A. Forster and C. A. Gilligan, Proc. Natl. Acad. Sci. U.S.A.

104, 4984 �2007�.
�19� J. Hooyberghs, F. Iglói, and C. Vanderzande, Phys. Rev. E 69,

066140 �2004�.

�20� C. J. Neugebauer, S. V. Fallert, and S. N. Taraskin, Phys. Rev.
E 74, 040101�R� �2006�.

�21� M. M. de Oliveira and R. Dickman, Phys. Rev. E 71, 016129
�2005�.

�22� S. Lübeck and P. C. Heger, Phys. Rev. E 68, 056102 �2003�.
�23� M. M. de Oliveira and R. Dickman, Braz. J. Phys. 36, 3A

�2005�.
�24� S. Lübeck, Int. J. Mod. Phys. B 18, 3977 �2004�.
�25� C. A. Voigt and R. M. Ziff, Phys. Rev. E 56, R6241 �1997�.
�26� O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, Phys.

Rev. B 61, 1160 �2000�.
�27� E. Carlon, P. Lajko, and F. Igloi, Phys. Rev. Lett. 87, 277201

�2001�.
�28� M. E. Fisher, Rev. Mod. Phys. 46, 597 �1974�.
�29� A. B. Harris, J. Phys. C 7, 1671 �1974�.
�30� T. Vojta, J. Phys. A 39, R143 �2006�.

CONTACT PROCESS IN DISORDERED AND PERIODIC… PHYSICAL REVIEW E 78, 041117 �2008�

041117-11


